UNIT G 481	Module 3	1.3.3	Power	1	
• <u>Candida</u>	tes should be able to :			• POWER (P) is defined as the rate of work done or of energy transfer.	
• De	efine POWER as the rate	of work a	done.		
• De	efine the WATT .			• The unit of power is the WATT (W) .	
• Ca	alculate power when solving	g problen	15.	1 WATT (W) is defined as a rate of work done or of energy transfer of 1 JOULE PER SECOND .	
• 51 10	tate that the EFFICIENC 10% because of heat losse.	Y of a de s.	vice is always less than	$1 W = 1 J s^{-1}$	
• 50	elect and apply the relatio	nship for	% EFFICIENCY :	We also use larger power units such as the KILOWATT (kW) and MEGAWATT (MW) and smaller units such as the MILLIWATT (mW).	
	% efficiency = <u>useful a</u> Total i	output en input ene	nergy x 100% Prgy	$1 \text{ kW} = 10^{6} \text{ W}$ $1 \text{ MW} = 10^{6} \text{ W}$ $1 \text{ mW} = 10^{3} \text{ W}$	
• In	terpret and construct SANKEY	diagrams.		If ENERGY (E) is transferred in TIME (t), the POWER (P) is :	
• POWER	(P)			$P = \underbrace{E}_{(J)} \qquad From which :$ $F = P \times t$	
• Energy a	can be transferred from a WORK DONE, HEATING,	one objec	t to another by :	If the energy is transferred by a force doing WORK (W) in TIME (t) the POWER (P) is :	
•	ELECTRICITY, or WAVES.			$P = \frac{W}{t} - (J)$	
The POWL energy call the competition	ER of any energy transfer proce n be transferred. All timed athl titors. In all such events, the a	ess depends letic events athlete is re	on how quickly a given amount of are a 'power' struggle between equired to do the work needed to	(W) (s)	
carry thei form the amount of	r body over a measured distance task in the shortest time. Of co work done by each person will d	e and the w purse, since liffer, so it	inner is the person who can per- their weight is different the is not strictly the most powerful	• <u>NOTE</u> : 'W' is used for both the WATT and WORK DONE. Take care not to confuse them !	
athlete th greatest 'power to i	at will emerge the winner. The <u>s</u> weight ratio'.	gold medal	belongs to the athlete with the	FXA © 2008	

UNIT 6481	Module 3	1.3.3	Power	•	USEFUL POWER EQUATION - P = Fv 2
HUMAN The aver about 12 warm, ta power us average So, the same ray be much PRACTI	BODY POWER Tage daily food intake for MJ of energy. This energy move about etc We can be move about etc We can be down a person in the could power = <u>energy transfer</u> Time average human being dissing te as two 60 W light bulbs greater when we are engen CAL ESTIMATION OF F	a typical rgy is use rse of a s rred = 2 pates end 5. Of cou aged in a	human being would give by the body to keep to estimate the average single day. $\frac{12 \times 10^6}{24 \times 60 \times 60} \approx 140 W.$ ergy at approximately the urse, this power value can ny kind of physical activity.		If a constant FORCE (F) is applied to an object and it does work by moving its point of application through a DISTANCE (s) in a TIME (t), then the POWER (P) is given by : $Power = \frac{work \text{ done}}{time} = \frac{force \times distance}{time}$ $P = \frac{F \times s}{t} = F \times v$ $(W) (N) (m \ s^{-1})$
 A is used is provided in the second se	weight-training exercise th as the BENCH PRESS performed 10 times ing the maximum weight ich the individual can infortably manage. The ne (t) taken to do all 10 petitions is measured ing a stopwatch. Steel tape measure is used to make own weight (W) is moved for each own weight (W) is moved for each inter = <u>Work done</u> = <u>10 x mgh</u> =	easure The	theight (h) through which the the through which	•	 PRACTICE QUESTIONS (1) (a) An athlete delivers 24 kJ of energy as he goes through an exercise over a 2 minute period. What is his average power ? (b) Calculate the energy used by a 100 W light bulb if it is left on all day. (c) A racing car engine does 8500 kJ of work in 55 s. What is its output power ?
 It should be noted that this is only a rough estimate. In order to simplify the determination, no account has been taken of : The work done against friction. The work done in the second half of each repetition as the weight is lowered to the starting position under gravity. 		2	A cyclist uses a dynamo to generate electricity for the lights on his bike. If the lights are rated at 4 <i>W</i> and he cycles for 1 <i>hour</i> , how much <i>energy</i> will he use up ? Assume that no work is done against friction. <i>FXA © 2008</i>		

UNI	T G481	Module 3	1.3.3	Power	•	EFFICIENCY AND SANKEY DIAGRAMS 3			
3	 3 Each time the heart beats, it pumps and accelerates about 25 g of blood from 0.20 m s⁻¹ to 0.35 m s⁻¹. Calculate : (a) The <i>increase in kinetic energy</i> of the blood produced by each beat. (b) The <i>power</i> of the heart when it beats at 80 beats per minute. 					• No energy transfer is 100% efficient. Only part of the input energy Is transformed into the energy form which is wanted. We say the Rest is wasted because it appears in an unwanted form (e.g. heat or Sound). Devices are always less than 100% efficient because even Though friction can be reduced, it can never be completely eliminated.			
4	At the f water dr of 60 m of 5.7 Calculate energy t gravitat to kineti	famous <i>Niagara Falls</i> rops through a height at the amazing rate $x 10^6 kg s^{-1}$. The the <i>power</i> of this transfer from ional potential energy ic energy.			•	• The % EFFICIENCY of any device or system may be calculated using the following equations : % Efficiency = <u>useful energy output</u> × 100% total energy input × 100% % Efficiency = <u>useful power output</u> × 100% total power input			
5	(a) Show (b) A cai <i>maxi</i> 10 m	r that <i>power</i> may be exp r engine has a maximum p <i>mum motive force</i> which n s ⁻¹ and 30 m s ⁻¹ .	ressed as s power of <i>1</i> a such an e	<i>force x velocity.</i> <i>50 kW</i> . Calculate the ngine can provide at		Efficiency may be represented pictorially using SANKEY DIAGRAM (previously discussed in 1.3.1 - Work and Energy Conservation). <u>SANKEY DIAGRAMS</u> are schematic representations of energy transfer situations in which the width of the annowe used shows the percentage of the total			
6	A girl of constant of its le	ⁱ mass <i>65 kg</i> rides a mou t speed of <i>4 m s⁻¹</i> up a h ngth.	intain bike ill which ri	of mass <i>15 kg</i> at a ses <i>1.0 m</i> for every <i>10 m</i>		input energy that is transformed into each energy form.			
	If air ar to gravit	nd road resistance amoun ty, <i>g = 9.81 m s⁻²</i> , calcu	t to <i>25 N</i> llate the p	and the acceleration due <i>ower</i> she is developing.		FXA © 2008			

UNIT 6481		Module 3	1.3.3	Power		5
HOMEWORK QUESTIONS						A small dinghy has an outboard motor with a propeller which is <i>20 cm</i> in diameter. If the dinghy is tied to the quayside and the engine is
1	(a) Explain what is meant by the term POWER .			started, the propeller forces back a stream of water at a speed of 6.0 m s ⁻¹ .		
	(b) Water leaves a reservoir, falls through a vertical height of 130 m and causes a water wheel to rotate. The rotating wheel is then used to produce 110 kW of electrical power.					Calculate the <i>input power</i> to the engine if it is <i>40%</i> efficient and the density of sea water is <i>1.1 x 10³ kg m-3</i> .
	(i) Calculate the <i>velocity of the water</i> as it reaches the whe assuming that all the gravitational potential energy is converted to kinetic energy.		er as it reaches the wheel, potential energy is	4	(a) Explain the concept of <i>work</i> and relate it to <i>power</i> .	
	(ii) Calculate the <i>mass of water</i> flowing through the wheel per second, assuming that the production of electrical energy is 100% efficient.					(b) A cable car is used to carry people up a mountain. The mass of the car is <i>2000 kg</i> and it carries <i>80</i> people, of average mass <i>60 kg.</i> The vertical height travelled is <i>900 m</i> and the time taken is
	(iii) <i>State</i> and <i>explain</i> <u>two</u> flowing per second nee <i>(ii)</i> in order to produce	reasons w ds to be g this amou	hy the mass of water reater than the value in nt of electrical power		 (i) Calculate the <i>gain in gravitational potential energy</i> of the 80 people in the car. (ii) Calculate the <i>minimum power</i> required by a motor to lift the cable car and its passengers to the top of the mountain. (OCR AS Physics - Module 2821 - June 2001)
		(00	R AS Physics	5 - Module 2821 - June 2004)		
2	A car of speed of	mass <i>1000 kg</i> is moving <i>10 m s⁻¹</i> against a cons	g on a horiz tant fricti	contal road at a <i>steady</i> onal force of <i>400 N.</i>		
	(a) Calcu	late the <i>power output</i> o	of the engi	ne.		
	(b) The c Assu calcu speec	car now climbs up a hill in ming that the frictional Ilate the <i>new engine por</i> d.	nclined at a force rem wer require	8° to the horizontal. ains constant at 400 N , ed to maintain the 10 m s ⁻¹		
						FXA @ 2008